GHAPTER FOUR

Solution Methods of Finite Difference Equations

In this chapter, solution methods for elliptic, parabolic, hyperbolic equations, and
Burgers’ equations are presented. These equations do not represent actual fluid dynam-
ics problems, but the methods discussed in this chapter will form the basis for solving
incompressible and compressible flow problems which are presented in Chapters 3
and 6, respectively. Although the computational schemes for these equations have been
in existence for many years and are well documented in other text books, they are
summarized here merely for the sake of completeness and for references in later
chapters.

4.1 ELLIPTIC EQUATIONS

Elliptic equations represent one of the fundamental building blocks in fluid mechanics.
Steady heat conduction, diffusion processes in viscous, turbulent, and boundary layer
flows, as well as chemically reacting flows are characterized by the elliptic nature of the
governing equations. Various difference schemes for the elliptic equations and some
solution methods are also presented in this chapter.

41.1 FINITE DIFFERENCE FORMULATIONS
Consider the Laplace equation which is one of the typical elliptic equations,
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The five-point and nine-point finite differences for the Laplace equation are, respec-
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Figure 4.1.1 Finite difference grids with Dirichlet boundary con-

ditions specified at all boundary nodes.

as discussed in Chapter 3. For illustration, let us consider the five-point scheme (4.1.2)

for the geometry given in Figure 4.1.1.
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(4.1.4)

where {3 is defined as B = Ax/Ay. For Dirichlet boundary conditions, the values of u at
all boundary nodes are given. Thus, writing (4.1.4) at all interior nodes and setting

y=-2(1+B%)

we obtain for the discretization as shown in Figure 4.1.1,
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(4.1.5)

Notice that the matrix on the left-hand side is always pentadiagonalized for the five-
point scheme. The nine-point schemes given by (4.1.3), although more complicated, can

be written similarly as in (4.1.5).

There are two types of solution methods for the linear algebraic equations of
the form (4.1.5). The first kind includes the direct methods such as Gauss elimina-
tion, Thomas algorithm, Chelosky method, etc. The second kind includes the iterative
methods such as Jacobi iteration, point Gauss-Seidel iteration, line Gauss-Seidel itera-
tion, point-successive over-relaxation (PSOR), line successive over-relaxation (LSOR),
alternating direction implicit (ADI), and so on.



4.1 ELLIPTIC EQUATIONS

The disadvantage of the direct methods is that they are more time consuming than
iterative methods. Additionally, direct methods are susceptible to round-off errors
which, in large systems of equations, can be catastrophic. In contrast, errors in each
step of an iterative method are corrected in the subsequent step, thus round-off errors
are usually not aconcern. We elaborate on some of the iterative methods in Section4.1.2,
and a direct method of Gaussian elimination in Section 4.1.3. Other methods will be pre-
sented in later chapters, including conjugate gradient methods (CGM) (Section 10.3.1)
and generalized minimal residual (GMRES) algorithm (Section 11.5.3).

4.1.2 [TERATIVE SOLUTION METHODS

Jacobi lteration Method

In this method, the unknown u at each grid point is solved in terms of the initial
guess values or previously computed values. Thus, from (4.1.4), we compute a new value
of u; ; at the new iteration k + 1 level as
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where & represents the previously computed values or the initial guesses for the first
round of computations. The computation is carried out until a specified convergence
criterion is achieved.

We may use the newly computed values of the dependent variables to compute the
neighboring points when available. This process leads to efficient schemes such as the
Gauss-Seidel method.

Point Gauss-Seidel Iteration Method

In this method, the current values of the dependent variables are used to compute
neighboring points as soon as they are available. This will increase the convergence rate.
The solution for the independent variables is obtained as
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The k£ 4 1 level on the right-hand side of (4.1.7) indicates that the solution process takes
advantage of the values at i —1 and j—1 which have just been calculated in the previous
step.

Line Gauss-Seidei Iteration Method
Equation (4.1.5) may be solved for the three unknownsat (i — 1, j), (, j). (i + 1, ),
as follows:

20 B ] = ) (4.18)

which leads to a tridiagonal matrix. Note that uﬂ:] is known at the k + 1 level, whereas
uf‘ ;41 Wwas determined at the kth level. This method converges faster than the point
Gauss-Seidel method, but it takes more computer time per iteration. The line iteration
technique is useful when the variable changes more rapidly in the direction of the

iteration because of the use of the updated values.
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Point Successive Over-Relaxation Method (PSOR)

Convergence of the point Gauss-Seidel method can be accelerated by rearranging
(4.1.7),
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The idea is to make ufﬁ j approach uf-‘jl faster. To this end, we introduce the relaxation
parameter, o, to be multiplied to the terms with brackets on the right-hand side of
(4'1'9)’

s ;_u,k . w y WL R0k Y 201+ 82k ]
ij = 2(1_+_BZ)L z+11_'_ i—1.j TR M j U ) WL p 4]
or
k+1 w 1k k41 k+1
i (1 - (D)Ll 2(1 4 BZ)[ i+1.j +uz+1] +B ( tj+1 +uz—}— 1)] (4'1'10)

where we choose 1 < w < 2 for convergence. This 1s known as the point successive
over-relaxation procedure. For certain problems, however, a better convergence may
be achieved by under-relaxation, where the relaxation parameterischosenas0 < w < 1.
Note that for v = 1 we recover the Gauss-Seidel iteration method.

For a rectangular domain subjected to Dirichlet boundary conditions with constant

step size, we obtain the optimum relaxation parameter
2—+1-
Wopr = oV (4.1.11)
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where IM and JM refer to the maximum numbers of i and j, respectively. Further
details are found in Wachspress [1966] and Hageman and Young [1981].

Line Successive Over-Relaxation Method (LSOR)
The idea of relaxation may also be applied to the line Gauss-Seidel method,
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where an optimum relaxation parameter w can be determined experimentally, or by
(4.1.11).

Aiternating Direction Implicit (AD1) Method
In this method, a tridiagonal system is solved for rows first and then followed by
columns, or vice versa. Toward this end, we recast (4.1.8) into two parts:
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4.2 PARABOLIC EQUATIONS

and
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Here (4.1.14a) and (4.1.14b) are solved implicitly in the x-direction and y-direction,
respectively. The relaxation parameter o may be introduced to accelerate the
convergence
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with the optimum w being determined experimentally as appropriate for different phys-
ical problems.

4.1.3 DIRECT METHOD WITH GAUSSIAN ELIMINATION

Consider the simultaneous equations resulting from the finite difference approximation
of (4.1.2) in the form
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Here, our objective is to transform the system into an upper triangular array. To this
end, we choose the first row as the “pivot” equation and eliminate the u; term from
cach equation below it. To eliminate u; from the second equation, we multiply the first
equationby k»; / k1) and subtract it from the second equation. We continue similarly until
uy 1s eliminated from all equations. We then eliminate u,, u3, ... in the same manner
until we achieve the upper triangular form,
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It is seen that backsubstitution will determine all unknowns.
An example for the solution of a typical elliptical equation is shown in Section 4.7.1.

4.2 PARABOLIC EQUATIONS

The governing equations for some problems in fluid dynamics, such as unsteady heat
conduction or boundary layer flows, are parabolic. The finite difference representation



